Research & publications

Research

Our research lies at the crossroad of genetics, molecular biology and biophysics. We study the architecture of eukaryotic chromatin focusing on molecular mechanisms that drive DNA recombination events. Using various approaches (e.g. ChIP-Seq, FRET, FRAP) we address central problems of genome instability as (i) chromosomal R-loops – RNA-DNA hybrids – that form under physiological and pathological conditions, (ii) developmentally programmed DNA double-strand breaks (DSBs) associated to the initiation of meiotic recombination, (iii) histone modifications and histone gene mutations driving human disease. Most recently we target various histone modifying enzymes and recombinosome proteins to predefined chromosomal loci to induce meiotic recombination.

Publications

Zsolt Karányi, Ágnes Mosolygó-L, Orsolya Feró, Adrienn Horváth, Beáta Boros-Oláh, Éva Nagy, Szabolcs Hetey, Imre Holb, Henrik Mihály Szaker, Márton Miskei, Tibor Csorba, Lóránt Székvölgyi
NODULIN HOMEOBOX is required for heterochromatin homeostasis in Arabidopsis. NAT COMMUN (2022)
https://www.nature.com/articles/s41467-022-32709-y

Márton Miskei, Adrienn Horváth, Lívia Viola, Laura Varga, Éva Nagy, Orsolya Feró, Zsolt Karányi, Jason Roszik, Csaba Miskey, Zoltán Ivics, Lóránt Székvölgyi
Genome-wide mapping of binding sites of the transposase-derived SETMAR protein in the human genome. CSBJ (2021)
https://www.sciencedirect.com/science/article/pii/S2001037021003007#s0035

Klára Fodor, Nikoletta Dobos, Andrew Schally, Zita Steiber, Gábor Oláh, Éva Sipos, Lóránt Székvölgyi
The targeted LHRH analog AEZS-108 alters expression of genes related to angiogenesis and development of metastasis in uveal melanoma. ONCOTARGET (2020)
https://pubmed.ncbi.nlm.nih.gov/32010430

Zsolt Karányi, Lilla Hornyák, Lóránt Székvölgyi
Histone H3 lysine 56 acetylation is required for formation of normal levels of meiotic DNA breaks in S. cerevisiae. FRONT CELL DEV BIOL (2020)
https://pubmed.ncbi.nlm.nih.gov/31998719

Beáta Boros-Oláh, Nikoletta Dobos, Lilla Hornyák, Zoltán Szabó, Zsolt Karányi, Gábor Halmos, Jason Roszik, Lóránt Székvölgyi
Drugging the R-loop interactome: RNA-DNA hybrid binding proteins as targets for cancer therapy. DNA REPAIR (AMST) (2019)
https://pubmed.ncbi.nlm.nih.gov/31300387

Éva Hegedüs, Endre Kókai, Péter Nánási, László Imre, László Halász, Rozenn Jossé, Zsuzsa Antunovics, Martin R Webb, Aziz El Hage, Yves Pommier, Lóránt Székvölgyi, Viktor Dombrádi, Gábor Szabó
Endogeneous single-strand DNA breaks at RNA polymerase II promoters in Saccharomyces cerevisiae. NUCLEIC ACID RESEARCH (2018)
https://www.ncbi.nlm.nih.gov/pubmed/30445637

Zsolt Karányi, László Halász, Laurent Acquaviva, Dávid Jónás, Szabolcs Hetey, Beáta Boros-Oláh, Feng Peng, Doris Chen, Franz Klein, Vincent Géli, Lóránt Székvölgyi
Nuclear dynamics of the Set1C subunit Spp1 prepares meiotic recombination sites for break formation. JOURNAL OF CELL BIOLOGY (2018)
http://jcb.rupress.org/content/early/2018/07/20/jcb.201712122

Sipos E, Dobos N, Rozsa D, Fodor K, Olah G, Szabo Z, Szekvolgyi L, Schally AV, Halmos G.
Characterization of luteinizing hormone-releasing hormone receptor type I (LH-RH-I) as a potential molecular target in OCM-1 and OCM-3 human uveal melanoma cell lines. ONCO TARGETS AND THERAPY (2018)
https://www.ncbi.nlm.nih.gov/pubmed/29503568

Hornyák L, Dobos N, Koncz G, Karányi Z, Páll D, Szabó Z, Halmos G, Székvölgyi L.
The Role of Indoleamine-2,3-Dioxygenase in Cancer Development, Diagnostics, and Therapy. FRONTIERS IN IMMUNOLOGY (2018)
https://www.ncbi.nlm.nih.gov/pubmed/29445380

Jason Roszik, György Fenyőfalvi, László Halász, Zsolt Karányi, Lóránt Székvölgyi
In Silico Restriction Enzyme Digests to Minimize Mapping Bias in Genomic Sequencing. MOLECULAR THERAPY (2017)
http://www.sciencedirect.com/science/article/pii/S2329050117300785

Szabolcs Hetey, Beáta Boros-Oláh, Tímea Kuik-Rózsa, Qiuzhen Li, Zsolt Karányi, Zoltán Szabó, Jason Roszik, Nikoletta Szalóki, György Vámosi, Katalin Tóth, Lóránt Székvölgyi
Biophysical characterization of histone H3.3 K27 M point mutation.  BBRC (2017)
http://www.sciencedirect.com/science/article/pii/S0006291X17312524

Yong Qin, Suhendan Ekmekcioglu, Marie-Andrée Forget, Lorant Szekvolgyi, Patrick Hwu, Elizabeth A. Grimm, Amir A. Jazaeri, Jason Roszik
Cervical Cancer Neoantigen Landscape and Immune Activity is Associated with Human Papillomavirus Master Regulators. FRONTIERS IN IMMUNOLOGY (2017)
http://journal.frontiersin.org/article/10.3389/fimmu.2017.00689/full

Sipos E, Hegyi K, Treszl A, Steiber Z, Mehes G, Dobos N, Fodor K, Olah G, Szekvolgyi L, Schally AV, Halmos G
Concurrence of chromosome 3 and 4 aberrations in human uveal melanoma. ONCOLOGY REPORTS (2017)
https://www.ncbi.nlm.nih.gov/pubmed/28350068

Halász L, Karányi Zs, Boros-Oláh B, Kuik-Rózsa T, Sipos É, Nagy É, Mosolygó-L Á, Mázló A, Rajnavölgyi É, Halmos G, Székvölgyi L.
RNA-DNA hybrid (R-loop) immunprecipitation mapping: an analytical workflow to evaluate inherent biases. GENOME RESEARCH (2017)
http://m.genome.cshlp.org/content/early/2017/03/24/gr.219394.116

Szekvolgyi L, Ohta K, Nicolas A.
Initiation of meiotic homologous recombination: flexibility, impact of histone modifications and chromatin remodeling. CSH PERSPECT BIOL (2015)
http://cshperspectives.cshlp.org/content/7/5/a016527.long

Acquaviva L*, Szekvolgyi L*, Dichtl B, Dichtl BS, Saint Andre CD, Nicolas A, Géli V.
The COMPASS Subunit Spp1 Links Histone Methylation to Initiation of Meiotic Recombination. SCIENCE  (2013)
*joint first-authors
http://science.sciencemag.org/content/339/6116/215

Szekvolgyi L, Rakosy Z, Balint LB, Kokai E, Imre L, Vereb G, Bacso Z, Goda K, Varga S, Balazs M, Dombradi V, Nagy L, Szabo G.
Ribonucleoprotein-masked nicks at 50-kbp intervals in the eukaryotic genomic DNA. PNAS  (2007)
http://www.pnas.org/content/104/38/14964.short

 

Publications in Hungarian

Székvölgyi Lóránt: Miről mesélnek a kromoszómatörések?

Székvölgyi Lóránt: Ha törik, ha szakad: DNS és genomszerkezet-kutatás a Debreceni Egyetemen