Category: News

 

World-renowned research at the University of Debrecen

(article on the website of the University of Debrecen)

World-renowned research at UD

The researchers of the University of Debrecen have achieved world-famous results in the study of chromosome-forming chromatin. The research group managed to show that the protein NODULIN HOMEOBOX (NDX) regulates heterochromatin, which is depleted in genes and is functionally inactive. Their high-impact publication presenting the research appeared in Nature Communications, one of the most prestigious scientific journals.

Read the full article here:
https://hirek.unideb.hu/en/world-renowned-research-ud


 

Világsikerű egyetemi kutatás

Világszínvonalú eredményt értek el a Debreceni Egyetem kutatói a kromoszómákat alkotó kromatinállomány vizsgálatában. A kutatócsoport bebizonyította, hogy a NODULIN HOMEOBOX (NDX) fehérje szabályozza a génekben szegény és funkcionálisan inaktív heterokromatint. A kutatást bemutató nagyhatású publikáció a világ egyik legrangosabb tudományos folyóiratában, a Nature Communications-ban jelent meg.

A teljes cikk itt olvasható:
https://hirek.unideb.hu/node/13080

New publication in Nature Communications

New article has been published in Nature Communications:

NODULIN HOMEOBOX is required for heterochromatin homeostasis in Arabidopsis
Zsolt Karányi, Ágnes Mosolygó-L, Orsolya Feró, Adrienn Horváth, Beáta Boros-Oláh, Éva Nagy, Szabolcs Hetey, Imre Holb, Henrik Mihály Szaker, Márton Miskei, Tibor Csorba, Lóránt Székvölgyi

Abstract. Arabidopsis NODULIN HOMEOBOX (NDX) is a nuclear protein described as a regulator of specific euchromatic genes within transcriptionally active chromosome arms. Here we show that NDX is primarily a heterochromatin regulator that functions in pericentromeric regions to control siRNA production and non-CG methylation. Most NDX binding sites coincide with pericentromeric het-siRNA loci that mediate transposon silencing, and are antagonistic with R-loop structures that are prevalent in euchromatic chromosomal arms. Inactivation of NDX leads to differential siRNA accumulation and DNA methylation, of which CHH/CHG hypomethylation colocalizes with NDX binding sites. Hi-C analysis shows significant chromatin structural changes in the ndx mutant, with decreased intrachromosomal interactions at pericentromeres where NDX is enriched in wild-type plants, and increased interchromosomal contacts between KNOT-forming regions, similar to those observed in DNA methylation mutants. We conclude that NDX is a key regulator of heterochromatin that is functionally coupled to het-siRNA loci and non-CG DNA methylation pathways.

American-hungarian joint research at the University of Debrecen

(article on the website of the University of Debrecen)

US Researcher Joins UD Team

János Roszik, researcher of the MD Anderson Cancer Centre of the University of Texas will join the Lendület Genome Structure and Recombination research group of the University of Debrecen. In the framework of the Fulbright programme, János Roszik will spend three months working with the UD research group in a project that aims to study the relationship between R-loop structures and mutations that occur in tumours.

Amerikai-magyar kutatás a Debreceni Egyetemen

Bekapcsolódik a Debreceni Egyetemen működő Lendület Genomszerkezet és Rekombináció kutatócsoport tumorgenetikai vizsgálataiba Roszik János, a Texasi Egyetem MD Anderson Rákkutató Központ munkatársa. A Fulbright program támogatásával Roszik János három hónapig személyesen az egyetemen segíti a kutatást, melynek célja az úgynevezett R-hurok szerkezetek és a tumorokban előforduló mutációk kapcsolatának vizsgálata.

A teljes cikk itt olvasható:
https://hirek.unideb.hu/amerikai-magyar-kutatas-debreceni-egyetemen

FEBS interview: On becoming a group leader

On becoming a group leader: Lóránt Székvölgyi, University of Debrecen, Hungary

In this FEBS interview Lóránt Székvölgyi answers the following questions:

What does your research focus on?
What steps did you take to realize your dream of becoming a PI?
What frustrates or worries you most about research careers currently?
What would be your advice to young scientists who would like to start their own lab?

Read the full interview online on FEBS.

New publication in CSBJ

New article has been published in Computational and Structural Biotechnology Journal:

Genome-wide mapping of binding sites of the transposase-derived SETMAR protein in the human genome
Márton Miskei, Adrienn Horváth, Lívia Viola, Laura Varga, Éva Nagy, Orsolya Feró, Zsolt Karányi, Jason Roszik, Csaba Miskey, Zoltán Ivics, Lóránt Székvölgyi

Abstract. Throughout evolution, DNA transposons provide a recurrent supply of genetic information to give rise to novel gene functions by fusion of their transposase domain to various domains of host-encoded proteins. One of these “domesticated”, transposase-derived factors is SETMAR/Metnase which is a naturally occurring fusion protein that consists of a histone-lysine methyltransferase domain and an HsMar1 transposase. To elucidate the biological role of SETMAR, it is crucial to identify genomic targets to which SETMAR specifically binds and link these sites to the regulation of gene expression. Herein, we mapped the genomic landscape of SETMAR binding in a near-haploid human leukemia cell line (HAP1) in order to identify on-target and off-target binding sites at high resolution and to elucidate their role in terms of gene expression. Our analysis revealed a perfect correlation between SETMAR and inverted terminal repeats (ITRs) of HsMar1 transposon remnants, which are considered as natural target sites for SETMAR binding. However, we did not detect any untargeted events at non-ITR sequences, calling into question previously proposed off-target binding sites. We identified sequence fidelity of the ITR motif as a key factor for determining the binding affinity of SETMAR for chromosomes, as higher conservation of ITR sequences resulted in increased affinity for chromatin and stronger repression of SETMAR-bound gene loci. These associations highlight how SETMAR’s chromatin binding fine-tune gene regulatory networks in human tumour cells.